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LITHIUM NORCARANYLIDENOIDS. 
ALKYLATION AND EPIMERIZATION’ 

Philip M. Warner,* Suae-Chen Chang and Nicholas J. Koszewski 
Chemistry Department, Iowa State University, Ames, IA 50011 

Summary: The epimeric 7-bromo-7-lithionorcaranes have been stereospecifically generated; the 
exo-bromo isomer is stable at -78"C, while the endo- bromo isomer is reactive. The 
stereochemistry of its reaction with nBuLi involves inversion. 

The recent report' of a partially invertive alkylation of a lithium vinylidenoid with 

tBuLi prompts us to communicate similar results in a cyclopropylidenoid system. Our interest 

in the stereospecifically generated carbenoids 2a3-' and 2b3-5 was stimulated by our studies6 

of the Skattebol rearrangement' of la and lb, where it appeared reasonable that rearrangement 

of the latter was preceded by its epimerization to the former. 
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d, X = Br, Y = SnMe3 

Generation of carbenoid 2a from stannane 2~ was effected at -95°C' in THF (5 eq. nBuLi, 5 

min.). When 2a was warmed to -78°C for 30 min., followed by retooling to -95°C and quenching 

with MeOD, only 3-d resulted. Thus, 2a was stable at -78°C. Epimeric carbenoid 2b, synthe- 

sized from 2da at -95°C in THF (3 eq. nBuLi, 20 min.), ' behaved quite differently at -78°C. 

Now, quenching of the retooled 2b solution with Me00 (-95°C) gave, depending upon reaction 

time, up to 5 main products (eqn. l)."*" The overall yield of these products was 60-70%. 

2b 4 4-d 3-d 5-d 6 
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The ratios of the products were determined by analytical gc for reaction times varying from 

O-8 min. at -78°C. Reasonable pseudo-first-order kinetics13 were observed: kobs (loss of 

4-d) = (5.9 + 0.4) X 1O-3 Sd; kobs (production of 5-d and 6) = (5.8 + 0.4) x 10s3 set-l. 

From the ratios of 3-d:5-d:6, their relative rates of formation were calculated (using [THFJ = 

12 fi; InBuLij = 0.05 M13): kl/k3 : 1.3 M; k2/k3 z 160. 
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Mechanistically, the results can be interpreted in terms of three parallel competitive 

pathways for the demise of 2b (Scheme I). From such a scheme, one can calculate kl= 3.5 x 10m4 

set . -’ l4 The important conclusions are: (1) epimerization of 2b to the more stable 2a is 

relatively slow at -78"C, although rapid enough to be consistent with the aforementioned lb to 

la conversion;6 this means that previously encountered apparent epimerizations should be 

reevaluated to see whether they might have proceeded via bimolecular exchange;8 and (2) 2b 

undergoes stereoselective solvent insertion!' and stereospecific alkylation; alkylation 

involves a nucleophilic attackI with inversion of configuration. 

The higher temperature chemistry of carbenoid 2a was investigated briefly. In addition 

to other products, 3a those shown in eqns. (2) and (3) were found in the indicated ratios for 

2a 3 5 8 6 

-50°C: 18 : 6 8 13 

-25°C: 0 8 7 19 (3) 



reactions at -50°C and -25"C, respectively. Also, nBu3SnMe and nBu4Sn were both formed at 

-5O"C, and only nBu4Sn at -25°C. It can be seen that carbenoid butylation is fairly stereo- 
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random at -50" to -25°C. In our view, these results are best explained by assuming 2a is in 

equilibrium with its less stable, more reactive epimer, 2b, which is the source of 5 and 6 

(eqn. 4). 

8 < MeOH BuLi 2a / 2b 
THF 

> 6 + 7 
MeOH 

, 8 (4) 
7 BuLi 

9 

Further studies of the kinetic behavior of lithium carbenoids will be reported in due 

course. 
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